网站随时会被屏蔽无法访问,请下载APP继续阅读。APP内容更加精彩,期待你的到来。点击确认开始下载。

第1362章 诺贝尔物理学奖(3 / 5)

970年,苏联才在改进了很多次的托卡马克装置上第一次获得了实际的能量输出,不过要用当时最高级设备才能测出来,而且能量增益因子Q值大约是10亿分之一。

别小看这个十亿分之一,这使得全世界看到了希望,于是全世界都在这种激励下大干快上,纷纷建设起自己的大型托卡马克装置,欧洲建设了联合环- />

/>

托卡马克装置的核心就是磁场,要产生磁场就要用线圈,就要通电,有线圈就有导线,有导线就有电阻。托卡马克装置越接近实用就要越强的磁场,就要给导线通过越大的电流,这个时候,导线里的电阻就出现了,电阻使得线圈的效率降低,同时限制通过大的电流,不能产生足够的磁场。托卡马克貌似走到了尽头。幸好,超导技术的发展使得托卡马克峰回路转,只要把线圈做成超导体,理论上就可以解决大电流和损耗的问题,于是,使用超导线圈的托卡马克装置就诞生了,这就是超托卡马克。

另一种装置就是仿星器,这是主要是欧洲在搞的,这种装置是一种外加有螺旋绕组的磁约束聚变实验装置。它由一闭合管和外部线圈组成,闭合管呈直线形、“跑道“形或空间曲线形。常见的仿星器具有两对或三对螺旋绕组,前者磁面形状类似于椭圆,后者则近似于三角形。相邻螺旋绕组中通以大小相等方向相反的电流,螺旋绕组产生的磁场和纵向磁场合成后,磁力线产生旋转变换,因而能约束无纵向电流的等离子体。

目前,托卡马克是被科学家们公认为最有可能实现可控核聚变的装置,而仿星器的研究相对较少。不过,随着仿星器优化设计以及高温超导技术的进步,基于高温超导强磁场技术的先进仿星器有望成为稳态磁约束聚变技术路线的有力竞争者。

但是不管是托卡马克装置还是仿星器,目前的技术水平,都是让它停留在秒级别,都是属于实验室性质,距离工业应用还差得非常远。

也正是如此,有科学家就说了:距离可控核聚变实现,永远是50年!

刘韬解决杨-米尔斯理论,看似帮助可控核聚变的实现进程加快,可是理论到应用,这中间可是有相当遥远的路要走。

仅仅其他国家要研究透论文,就不是几年能够解决的。

更不要说,将理论应用于实际了。

科研项目,最重要的往往是带头人,一个出色的带头人,总是可以让项目取得推进。

就像奥本海默之于曼哈顿计划,科罗廖夫之于苏联航天。

刘韬不在意获得诺贝尔

举报本章错误( 无需登录 )